—=—=—_ (CarnegieMellon
—===__ Software Engineering Institute

Performance Property
Theories for Predictable
Assembly from Certifiable
Components (PACC)

Scott Hissam

Software Engineering Institute
Mark Kiein

Software Engineering Institute
John Lehoczky

Department of Statistics,

Carnegie Mellon University
Paulo Merson

Software Engineering Institute
Gabriel Moreno

Software Engineering Institute
Kurt Wallnau

Software Engineering Institute

September 2004

TECHNICAL REPORT
CMU/SEI-2004-TR-017
ESC-TR-2004-017

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

A—
AN
SN
A
———
—

CarnegieMellon
Software Engineering Institute

Pittsburgh, PA 15213-3890

Performance Property
Theories for Predictable
Assembly from Certifiable
Components (PACC)

CMU/SEI-2004-TR-017

ESC-TR-2004-017

Scott Hissam
Software Engineering Institute
Mark Klein
Software Engineering Institute
John Lehoczky
Department of Statistics, Carnegie Mellon University
Paulo Merson '
Software Engineering Institute
Gabriel Moreno
Software Engineering Institute
Kurt Wallnau
Software Engineering Institute

September 2004

Predictable Assembly from Certifiable Componenis
Initiative

Unlimited distribution subject to the copyright.

20050323 037

This report was prepared for the

SEI Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2004 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent. :

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013. ’

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubWeb.html).

Table of Contents

Abstract.... ' . reresesasnensasarananneas vii
1 Introduction........cccceeuunenen. ‘ . 1
2 Performance Approaches..........cueeeesmncsenesancns . 3
2.1 Basic NOAtiON....cccoveiererreerencrernessssssssseeisssnnnsassssessesssnnmsasssssssssnsessssssesssns 3
2.2 Generalized Rate Monotonic Analysis (GRMA)cccoememrieinnnincrcnscnnnnns 4
2.3 Classical Queueing ThEOTYc.ccereeeriimnieenseeninnsenensssnasssns 6
3 Sporadic Servers - . -
4 Reasoning About the Average Latency of Aperiodic Tasks Managed by

6

Application-Level Sporadic Serversccccecummecesmsmmnmsssenssssnsensassnsasansseacee 15
4.1 Observations About Average Latency When Using a Sporadic Server..... 16
4.2 Special Case of NO PeriodiCscevrinurimnsencnssnsncininnniininnesseneenenns 17
4.3 Special Case of No Background.........ccecuceeerrecsusnisniscsnnnntinnsssssnsnnnne. 18
4.4 Special Case of Continuous Background.............cceevnimiininnncnnnnnnsnienannn. 19

4.4.1 Computing Average Queueing Time (E[Q])....cccovvrrienrininsiincnnas 21

4.4.2 Computing Average Service Time (E[Ss]) «..ccccvrerrescnnnniniiisensannnns 22

4.4.3 Areas of ONgoing WOrK.......ceecrmmrveeeniiiineenncnsnsssiineinnenane, 36

4.4.4 Empirical EVIJENCEccceerueremmmnninrseestneessssssssinsnssessssssasnnnanes 37
4.5 Single-Subtask Assembliescccevriiircniiiiinininnieninne ressesnsssasesasnines 40
4.6 Multi-Subtask ASSEMDIIES.....cccccveeireerirsiinisrcnernsrrereccer s e 42
4.7 Observations on the No-Background Casec.ceccersmeerisrasseecsesssesenns 43
Application of the Theory 45
5.1 Reasoning HEUTSHCSc.cceeiiiemsmnniniininenesiientisssnnnsssasnssssannns 45
5.2 A Robotics-Based Model Problem.........cccceuereererunnnees rereeerererneeaneanrbeans 47

5.2.1 Tasks in the Model Problemccocciniiieieinniinnniniseennsinnisssnnens 47

5.2.2 ANAIYSIS SEUP.....coccriniriiiniitistertentesnsneetnese sttt 48
5.3 Preserving Periodic Deadlingsccveueveereenicinnnniiinininnnnciannn, vern. 50
‘5.4 Predicting Average-Case Latencyccceevrrniiiiinsninnnnnineennnnninn, 51
Conclusions........ . - ereseemssnaas 55

CMU/SEI-2004-TR-017 i

B.1 FULUIE WOTK .. veeirereerarernessssanssssnessssnssss st ssssssssasmsnasss s asastasansnsnasanassss

BibliOGraphycsurceessnennsnssnsssarsersusssnnenssscsssasassananss . S——

CMUY/SEI-2004-TR-017

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:

Figure 18:

Average Latency for a Simple QUEUE..........ccccerenmnninsesnenninieiniasnens 7
Example-of a Sporadic-Server-Controlled Taskcocouveinnniiseceensnss 10
Pseudocode for SStask......ccuerriermrirnmnirinmnisnnssesssntmssninsnsnsnnssneanses 11
Pseudocode for SSmanager.request() and SSmanager.arm()............... 12
Pseudocode for SSmanager.replenishment_timer()ccoccecvsevvceninnenne 12

ATTT oo eeeeeensssessesssnessssaassasesseesessssssssessssssssnssassnesssnssssanassstessasnsssatassansens 13
UML 2.0 Sequence Diagram of Application-Level SSSA:
RepIENISHMENL ..ottt ssasanenerees 14
' .E[W] = f(T,, Up) for Ta=200, S;=Sss=10, and Tes=100..ccveevurrcurecrsunesen. 16
Sample TIMENNE ..ottt st sanse 20
Predicting E[Q].......cocvurmreemamrurnssssssssisnisiesesnsnssnssnssssisssssssssssssasacnes 22
Differing Service Times for the Aperiodic Arfivalsccevnuenencseenee. 22
.Histogram OF T eeeeeeeeeiisssereresnnresesenessssnnsssasssssessessnsnssssnanassaseressnsesssssnes 24
Time to Replenishment and Busy Periods......ccecemssneemsisnniisenneressnnnenaes 25
CDF TOT X vveeerureersrrerseeressessssesessnsssssssssssasssssssssnssssesssasssssnssssassasnasessaanans 28
Tr Blaékout Dependency on Previous Blackout..........cccceeeminiiiniinnienns 37
fr,(t) Predicted Versus that Observed Through Simulation.............ce..c... 38
E[W] Predicted Versus that Observed Through Simulation 39
E[Q] Predicted Versus that Observed Through Simulation 39

CMU/SEI-2004-TR-017 iii

Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:

Figure 26:

E[S] Predicted Versus that Observed Through Simulation................... 40

Multi-Periodic Example—Utilization Evenly Divided...... oo 41
Multi-Periodic Example—Utilization Unévenly Divided.......cccovvneeririnnnne 42
Multi-Periodic Example with Multiple Subtaskscoceviirieiininenenne 42
Heuristics Applied to the Curves............ et 46
Tasks in the Robotics Model Problem.....cicceeiecneeneenreneneesessanssens 48
Analytic Representation of the Robotics Model Problem.........c.ccee.env... 50
Latency Observed for the Model Problem for Various Tp Values........... 53

CMU/SEI-2004-TR-017

List of Tables

Table 1: Basic Notation......... feeeeesesneee et e s e s evaens 4
Table 2: Performanbe Description of Model Problem Taskscccovueeennveisenninens 48
Table 3: Comparison of Prediction Heuristics and Simulation Curves................. 53
Table 4: Predicted and Actual Average-Case Latency for Task Mc......... 54

CMU/SEI-2004-TR-017 ' \

CMU/SEI-2004-TR-017

vi

Abstract

This report develops a queueing-theoretic solution to predict, for a real-time system, the aver-
age-case latency of aperiodic tasks managed by a sporadic server. The report applies this the-
ory to a model problem drawn in the domain of industrial robot control. In this model prob-
lem, a controller with hard periodic deadlines is “open” to third-party plug-in extensions. The
sporadic server is used to limit the invasiveness of aperiodic tasks on the controller’s hard
deadlines. The theory developed in this report is used to predict the average-case latency ofa
plug-in managed by a sporadic server.

CMU/SEI-2004-TR-017 ' ' vii

viii CMU/SEI-2004-TR-017

1 Introduction

The goal of the Predictable Assembly from Certifiable Components (PACC) Initiative at the
Carnegie Mellon® Software Engineering Institute (SEI) is to enable the construction of soft-
ware systems from components in a manner that allows for automatic prediction of system
behavior [Wallnau 03]. This goal is realized by developing and enhancing component tech-
nologies, using and extending property theories, and developing prototype tools and methods.
This report focuses on extending property theories for performance—one of the quality at-
tributes for which the PACC Initiative is developing a prediction capability.

Performance, or specifically timing behavior, is important to all systems. For some systems,
ensuring the satisfaction of hard deadlines is of primary importance. For other systems, miss-
ing deadlines occasionally is acceptable, provided the miss rate is guaranteed to not exceed a
specified threshold. Finally, for some systems, satisfactory performance is defined as meeting
average latency requirements. Our ultimate goal is to have prediction capability for all these
types of systems.

The initial work in creating a performance property theory (called Axpa) for a prediction-
enabled component technology (PECT) was documented by Hissam and colleagues [Hissam
02]. A is short for latency, and ABA is short for Average-case, with Blocking and allowing for
Asynchrony.

Aaga is built on a body of work known as Generalized Rate Monotonic Analysis (GRMA)
[Klein 93], which offers the ability to predict worst-case latency to ensure that hard deadlines
are met. Aaps extends GRMA to predict average-case latency. Aapa is constrained to a set of
component assemblies whose interpretation’ reduces to sequences of tasks (unit of concur-
rency) initiated periodically using both synchronous (e.g., call/return) and asynchronous (e.g.,
message-passing) communication.

The focus of this report is to generalize the Aypa theory to include tasks that are initiated sto-
chastically (or aperiodically—the terms are used synonymously) in addition to periodically.
This work entails developing a new analytic theory for predicting the average latency of ape-

Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Uni-
versity.

Interpretation assigns to an assembly specification a meaning—or semantics—in some property
theory. Interpretation is described in detail by Wallnau [Wallnau 03].

CMU/SEI-2004-TR-017) 1

riodic events in the context of a collection of real-time periodic events. This generalization
was motivated by systems that must handle aperiodic events without sacrificing the hard real-
time deadlines of periodic processes or tasks.? This new theory also imposes analytic con-
straints—in particular, systems must manage aperiodic events with sporadic servers.

The sporadic server scheduling algorithm (SSSA) [Sprunt 89] was invented to solve the prob-
lem of protecting periodic events with hard deadlines from bursts of high-priority stochastic
events while giving high priority to processing stochastic events. The hallmark of a sporadic .
server is that it provides a periodic “virtual processor” within which aperiodic events can be
processed and analyzed. This report provides a queueing-theoretic foundation for analyzing
the average-case latency of aperiodic events handled by a sporadic server.

Section 2 provides thumbnail sketches of GRMA and queueing theory, which serve as build-
ing blocks for this work. In Section 3, we describe sporadic servers in more detail. In Section
4, we develop a new property theory for predicting the average-case latency of aperiodic
events serviced under the control of a sporadic server. In Section 5, we describe a model
problem from the domain of robotics and show how to apply the property theory to that prob-
lem. We conclude in Section 6 with a brief description of where this work is headed.

2 The terms task and process are equivalent for the purpose of this report.

2 CMU/SE!-2004-TR-017

2 Performance Approaches

As described by Wallnau [Wallnau 03], a PECT comprises a construction framework and one
or more reasoning frameworks. Basically, a construction framework provides a vehicle for
specifying a set of assemblies that are automatically analyzable. For an assembly to be ana-
lyzed, it is interpreted and its interpretation is evaluated. Interpretation is the process of trans-
lating an assembly into a property-theory-specific representation suitable for evaluation via
logical rules of inference and/or simulation.

In the following subsections, we describe the notation and assumptions of the property theo-
ries we are using and developing.

2.1 Basic Notation

We assume a single processor executing a set of periodic tasks and a single aperiodic task.
Each task is stimulated to execute by the arrival of a sequence of events (either generated ex-
ternally such as by the arrival of a message or internally such as by a clock interrupt). When
the events for a speciﬁc task arrive at regular intervals, that task is designated as periodic
with a period of T; (or T, when there is only one periodic task). When the arrivals are not pe-
riodic, they are aperiodic (or sometimes we say stochastic or random). In this case, the aver-
age interarrival interval is denoted by T,.

Each task (regardless of whether it’s periodic or aperiodic) executes for a constant amount of
time when stimulated. This time is denoted by S;, (or S,) for the periodic task and S, for the
aperiodic task. We refer to this time as the execution time or service time.

Over a long period of time, each task uses a portion of the processor. For periodic tasks, this
usage is usually referred to as utilization and denoted by U; (or U,), where U; = S{/T;. For ape-
riodic tasks, this usage is referred to as the task’s traffic intensity and denoted by p where
p=S./T,. (While traffic intensity usually refers to all tasks, p=S./T, is referring to the traffic
intensity of a single task.) '

Later, we describe a special mechanism for scheduling the execution of aperiodic tasks—the
sporadic server. The sporadic server is characterized by two parameters: an execution budget
and a replenishment period. The execution budget is denoted by S, and the replenishment
period is denoted by Ti.

CMU/SEI-2004-TR-017 3

Each task also has a latency associated with it. The latency (or waiting time) is how long it
takes to complete the servicing of an event in the face of preemption from higher priority
events and the queueing time due to prior events. For periodic tasks, we might be concerned
with either worst-case or average-case laténcy. For aperiodic tasks, we are concerned with
average latency. In this report, we denote latency with the random variable W and average

~ latency as E[W].

Table 1: Basic Notatibn

Aperiodic Periodic Sporadic Server
Interarrival time T, Tpor T; T
Execution time S. S or S Se
Traffic intensity/ p U, or U
Utilization

The next two subsections offer thumbnail sketches of GRMA and queueing theory.

2.2 Generalized Rate Monotonic Analysis (GRMA)

GRMA is a theory for predicting the worst-case latency of a collection of hard real-time
tasks. Rate monotonic analysis (RMA) grew out of the fixed-priority scheduling theory of
periodic tasks. The term rate monotonic originated as a name for the optimal task priority
assignment in which higher priorities are accorded to tasks that execute at higher rates (that
is, as a monotonic function of rate). Rate monotonic scheduling is a term used in reference to
fixed-priority task scheduling that uses a rate monotonic prioritization. The original theory
was subsequently generalized to the point of being practicable for a large range of realistic
situations encountered in the design and analysis of real-time systems and is now referred to
as GRMA, a codification of which is discussed by Klein and colleagues [Klein 93]. Basic
GRMA problems3 have the following characteristics: '

e They involve a collection of periodic tasks executing on a single central processing unit
(CPU). In the simplest case, each task has a period, a priority, and an execution time.

o They use priority-based preemptive scheduling.
e Tasks may synchronize to use a shared resource.
e Deadlines are assumed to be at the end of the task’s period.

e In some cases, tasks may be broken down into a sequence of subtasks. The entire se-
quence is initiated periodically; however, each subtask has its own execution time and

~ priority.

3 These problems are basic in the sense that GRMA can handle a wider class of problem than is
characterized here.

4 CMU/SEI-2004-TR-017

Several Key GRMA Results. One of the principal goals of GRMA is to calculate worst-case
latency, which can then be compared with a deadline to determine whether it can be met.
Computing worst-case latency requires knowing that zero-phasing* produces the worst-case
latency. The worst-case latency for a task occurs when all the high-priority tasks become
ready to execute at the same instant as the given task. This moment is known as the critical
instant. The following recursive formula, Equation (1), can be used to compute the worst-
case latency of a task i, given that ‘

e Tasks 1 toi-1 are higher priority.
e There is no task synchronization.
e Tasks complete before the end of their periods.

e Task i starts at its critical instant.

i1 _ .
Xpnn = er‘;Tk ;1S (1)
| T;

The recursion can be started by setting X, to S;, and it ends when a fixed point is reached—
that is, when two successive iterations yield the same result. Variations of Equation (1) can be
used to account for blocking, to handle computation past the end of the period, and to handle

" tasks with multiple subtasks.

Using GRMA for Average-Case Latency. Strictly speaking, GRMA was developed as a
worst-case analysis tool; attention was focused on determining conditions leading to worst-
case latency. However, Aaps has used GRMA as an average-case analysis tool. To understand
average-case latency, we need some additional terminology:

e hyperperiod - The hyperperiod of task i is the least common multiple (LCM) of the peri-
ods of all tasks that have a priority greater than or equal to task i’s. After a hyperperiod,
the pattern of execution repeats.

e job - corresponds to each instance of a task’s execution during the hyperperiod

e job latency - the time it takes from the moment the task is ready to run to the moment it
finishes executing. Different jobs under the same task might have different latencies.

Since the pattern of execution is completely defined by a task’s hyperperiod, the average la-
tency of task i can be determined by computing the average job latency of all the jobs in task
i’s hyperperiod. A variation of Equation (1) can be used to calculate the job latency for each
job in the hyperperiod; these job latencies can then be used to compute the average latency.

4 We say two or more events are zero-phased in time when they happen at the same moment (i.e.,
there is no time delay between them).

CMU/SEI-2004-TR-017 5

2.3 Classical Queueing Theory

Whereas GRMA focuses on the case in which interarrival and service times are deterministic
(or at least bounded), queueing theory focuses on the case in which interarrivals and service
times are stochastic. Basic queueing’ problems have the following characteristics:

e Customers (that is, events) arrive to a service facility. They could be messages arriving to
a CPU according to a probability distribution. Due to its analytical tractability, exponen-
tial interarrival times are often used. We limit ourselves to exponential distribution for

now.

e Each customer requires a certain amount of time in the service facility also described by
a probability distribution. We limit ourselves to a constant amount of time for now.

e In many cases, queueing models include more than one service facility. We limit our-
selves to one service facility (that is, a single CPU).

Key Queueing-Theory Result. The key queueing result that we draw on is the following
formula: '

(p YES, - |
E[W]—(l—p)(ZE[SG]J+E[S“] @

The first term in Equation (2) above (known as the Pollacek-Khinchin expression [Kleinrock
75]) is the mean queueing time, which we denote by E[Q]:

(o Y ES,]
E[Q]= (1 = p](2H] SRJ 3)

Therefore, Equation (2) basically says that the mean latency is the mean queueing time plus
the mean service time: E[W] = E[Q] + E[S,].

The graph in Figure 1 shows E[W] as a function of p (for the case in which E[T,] = =200 and
E[S,] varies from 0 to 190). Notice that for low values of p (and E[S,]), E[S,] is the main
contributor to average latency. However, as p increases, the dominant term becomes E[Q].

5 Queueing theory comprises a vast and rich body of knowledge. We describe only the most basic
queueing-theory situations.

6 CMU/SEI-2004-TR-017

Contributions to E[W]

2500.00
2000.00 i
1500.00 ‘ ——
- - IESa]
1000.00 e E]Q)]
500.00 4“/—/
0.00 - e :

0.00 0.20 0.40 0.60 0.80 1.00
P

Figure 1: Average Latency for a Simple Queue

A major factor in a queueing system is the queueing time. Queues fill up due to bursts of ar-
rivals caused by variability in arrival and service times.

CMU/SE|-2004-TR-017

CMU/SEI-2004-TR-017

3 Sporadic Servers

The SSSA [Sprunt 89] was invented to protect periodic events with hard deadlines from
bursts of high-priority stochastic events while giving high priority to processing stochastic
events. The SSSA both limits and guarantees a certain amount of execution time for aperiodic
requests with soft or hard deadlines in a hard real-time system [Gonzalez Harbour 91].

Implementations of the SSSA are based on the general premise that a server (a process within
an operating system (OS) or a thread of control within a process) that handles high-priority
stochastic events will execute at one of two priorities: foreground (i.e., normal) or back-
ground.® An aperiodic task will execute at foreground priority if the sporadic server has not
exhausted its execution budget (S, in Table 1 on page 4). If the budget has been exhausted,
the aperiodic task is restricted to background priority. A sporadic server that has been re-
stricted to background priority is not restored to foreground priority or reactivated until its
execution budget is replenished.

The execution budget is a nonzero parameter used in the management of the sporadic server.
This budget is assigned when the server is created and either decreased or increased over the
lifetime of the sporadic server while never exceeding its initial value. The budget is decreased
each time the sporadic server handles an event in foreground priority. Further, each time the
budget is decreased, a replenishment event is scheduled based on the time the aperiodic event
arrived to the sporadic server and the replenishment period (Ts; in Table 1). The replenish-
ment period is also a nonzero parameter of the sporadic server. The replenishment event,
then, is a future point in time when the budget for the sporadic server is scheduled to be in-
creased.

- In general, the SSSA can be implemented in an OS’s scheduler (e.g., kernel mode) [Shi 01] or
within an application (e.g., user mode) [Gonzalez Harbour 91]. When implemented in an
0S’s kernel, measures of actual CPU execution time used by a process or thread permit more
precise accounting and finer manipulation of the sporadic server’s execution budget over its
lifetime. '

The application-level SSSA makes no assumptions about support for sporadic servers in any
given OS, lending easy adaptation to a variety of platforms. Comparisons between the appli-

¢ For this report, foreground priority is assumed to be higher than the ceiling of all periodic tasks;

likewise, background priority is assumed to be less than the floor of all periodic tasks.

CMU/SEI-2004-TR-017 9

cation-level sporadic server and the full-featured, OS-supported sporadic server show that
worst-case performance is the same (except for additional overhead) and the average-case
performance can be almost the same when the actual process or thread execution time ap-
proaches the worst-case estimation [Gonzalez Harbour 91].

Figure 2 is an example, adapted from Gonzalez Harbour’s work [Gonzalez Harbour 91], that
depicts the general behavior of an application-level sporadic server.

l. Replenishment
f Aperiodic event

SS foreground

Periodic [

SS background

10 A 2123 26 30
SS budget (S,,) = 10; replenishment (T,) = 18 -

Figure 2: Example of a Sporadic-Server-Controlled Task

In this example, each aperiodic event takes 5 units of time to be serviced. The first two aperi-
odic requests arrive at #=5 and #=12 and are serviced immediately because, at #=5, the execu-
tion budget of the sporadic server is decreased by 5 units of time. That decrease still leaves a
remaining execution budget of 5 units that permits the sporadic server to execute at fore-
ground priority. Also at #=5, a replenishment event is scheduled for =23 (i.e., 23 = event oc-
curring at 5 + replenishment period 18). At =12, the execution budget is again reduced by 5
units of time, the replenishment is scheduled for #=30, and the sporadic server can still exe-
cute at foreground priority. After #=12, the execution budget is exhausted, and when the next
aperiodic event arrives at #=18, the sporadic server is restricted to execute at background pri-
ority. The additional execution budget for 5 units of time is replenished at the scheduled
times of #=23 and =30, respectively, for the first two requests, thereby restoring the execu-
tion budget of the sporadic server.

To implement the SSSA at the application level (i.e., without explicit OS-level support), only
two key features of the implementation environment are necessary:

1. some form of synchronous, interprocess, or interthread communication

10 CMU/SEI-2004-TR-017

2. the ability for one process or thread to read and change another process or thread priority

The sporadic server manager, or SSmanager, is a user-level thread that operates at system
high priority. The purpose of the SSmanager is to manage one or more sporadic server tasks,
or SStasks, each of which processes aperiodic events. An aperiodic task can be converted into
an SStask by including two synchronous service requests to the SSmanager: request ()

and arm().

SSmanager .request () is a method called by the SStask as soon as the SStask receives
an aperiodic event (see Figure 3).

// SStask handling aperiodic events
Do while (not done)

SSmanager.arm (MyThreadlID)

// wait for aperiodic event request
08.wait (event)

SSmanager.regquest (uy'rhreadin, Sai
// Do Aperiodic Work

done = doWork(event) ;

End Do

Figure 3: Pseudocode for SStask

On invocation, SSmanager . request () decides whether to permit the SStask to run at
foreground priority based on the budget allocated to that SStask and the execution time re-
quested out of that budget (i.e., S,). If sufficient budget is available, the budget for the SStask
is decreased by the requested amount, a replenishment event is scheduled for a later time, and
the SStask’s priority is set to foreground priority. Otherwise, the request for an execution
budget is placed on a pending queue of requests, and the SStask’s priority is set to back-
ground priority (see Figure 4).

CMU/SEI-2004-TR-017 ' : 11

void SSmanager::arm(&SSTask) {

SetPriority (SSTask.ID, SYSTEM.MAX)
}
void SSmanager::request (&SSTask, request_Sa) {

If Sstask.budget >= request_sSa {
Decrease SStask.budget by request_sSa
Replenishment (SStask, now()+SStask.Tss, Sa)
SetPriority (8STask.ID, gsTask. foreground)

}

Else { :
SavePendingRequest (8STask, request_Sa)
SetPriority (8STask.ID, ssTask.background)

}
End if

}
Figure 4: Pseudocode for SSmanager. request() and SSmanager.arm()

SSmanager.arm() is also used by the SStask to communicate that the processing of the
aperiodic event is complete and that SStask is ready to process another aperiodic request.
SSmanager .arm() then places the SStask at a system high priority, allowing the latter to
wait at a high priority for the aperiodic event. Placing SStask at this priority is necessary
(specifically for the application-level SSSA) to allow SStask and SSmanager to acquire and
compute the replenishment origin (i.e., now () +SStask.Tss in Figure 4) in SSman~
ager.request () based on a time as close as possible to when the aperiodic event arrived

at the SStask.

BSmanager::replenishmant_timar(&sstask, request_Sa) {

Increase SStask.budget by request Sa

If GetPriority(sstask.ID == g8Stask.background and
sstask.budget >= GetPendingRequest (SSTask)

Decrease SStask.budget by GetPendingRequest (SSTask)

Replenishment (SStask, now()+SStask.Tss,
GetPendingRequest (SSTasgk))

SetPriority (SSTask.ID, g8STask.foreground)
End if
}

Figure 5: Pseudocode for SSmanager.replenishment_timer()

Replenishment of the SStask’s budget occurs in the SSmanager, usually via an OS-supported
timer event. The timer handler simply increases the execution budget for the SStask based on
the last honored request for execution time (i.e., Sa). Additionally, the timer handler will
check the current priority of the managed SStask. If it’s at background priority, the SStask is

12 CMU/SEI-2004-TR-017

still processing, in background, some aperiodic event for a request that could not previously
be honored due to the lack of an execution budget.” If the previous request can now be hon-
ored (i.e., a sufficient budget now exists) and SStask is processing in background, the previ-
ous request is honored following the same steps in SSmanager .request ().

High-level sequence diagrams covering the sequence of events between the SStask, SSman-

ager, and the host OS are shown in Figure 6 (for SSmanager . request () and SSman-

ager.arm()) and in Figure 7 (for the replenishment timer).

“arm” to capture N 88
next aperiodic aven| manager
(Y

| walt for aperiodic event

l kfeseossseoesncssccsnsvoce N R R)
request service time
| activate
l SS manager
| e)
| at) [execution budget avalisble] |
Schedule replenishment event
| and decrease budget |
I
I
| [olse] |
I
|
| Notation: y
UML 2.0 notation !
| | for sequence raspond service time request
| L e O ..
| CPU work | |
! D | |
Figure 6: UML 2.0 Sequence Diagram of Application-Level SSSA: Request and
Arm :
7 If the SStask is at foreground priority, there is no need to increase its priority. If the SStask is at
system high priority, the SStask is armed waiting on an aperiodic event and is not currently proc-
essing one. : '
CMU/SEI-2004-TR-017 13

‘88
‘manager
|

’°°”°’) ™ wait for replenishment event

replenishment
period
elapsed
TR R R
D Increase budget !
ait) | | [execution budget avaiiable && |
88 task still in background]
Schedule replenishment event '
and decrease budget |
SS task prionty = foreground
<-
| i
L]]
. ™
Notation :
UML 2.0 notation
for sequence
diagrams

Figure 7: UML 2.0 Sequence Diagram of Application-Level SSSA: Replenishment

CMU/SEI-2004-TR-017

4 Reasoning About the Average Latency of
Aperiodic Tasks Managed by
Application-Level Sporadic Servers

The previous section discussed the SSSA for blending aperiodic and periodic processing in a
controlled manner. The goal of this section is to show how queueing theory can be applied to
predict the average latency of aperiodic events managed by a sporadic server.

We start by discussing an assembly that has a single aperiodic stream of events with interarri-
val times governed by an exponential probability distribution and constant service times.
Such a situation is known as an M/D/1® queueing problem. The aperiodic events are proc-
essed under the control of a sporadic server. The assembly also has a single periodic stream
of events. The sporadic server executes at the highest priority and allows the aperiodic events
to execute whenever the needed budget is available. Otherwise, periodic events execute. Ape-
riodic events also exploit any available idle time left over from the periodics, that is, back-
ground time.

Assumptions. In summary, here are the governing assumptions for this section:

e There is a single stream of aperiodic arrivals. They arrive according to an exponential
distribution with mean T,—that is, if X is a random variable denoting the time interval
between successive arrivals, the cumulative probability distribution is

-—x

Pr(X <x)=1-e ™
e The execution time is constant, S,.

e Asingle application-level sporadic server is used. Its budget is equal to the constant ape-
riodic service time, S=S,. Aperiodics exploit background time, if it is available.

e The assemblies have one or more periodic tasks that run at a lower priority than the spo-
radic server. (We will focus initially on the special case in which there is a single periodic
task with execution time S; and period T.) ‘

M/D/1 is conventional queueing-theory shorthand denoting queueing systems with an exponential
interarrival distribution—M stands for “Markovian”—and a constant execution time—D stands
for deterministic.

CMU/SEI-2004-TR-017 15

In this section, our goal is to predict the average latency for the aperiodic events being ser-
viced by a sporadic server.

4.1 Observations About Average Latency When
Using a Sporadic Server

One outcome of our work to date is an understanding of which parameters are important for
controlling average latency. Looking at Equation (2), it is evident that S, and T, (which are
implicit in p = S,/T,) are important. The replenishment period (Tss) and the budget (Ss,) of the
sporadic server are also important. The utilization of the periodic events (Up) is important,
and, perhaps most surprisingly, the period of the periodic events (T}) is also an important pa-
rameter. :

To visualize the impact of varying the aforementioned parameters, we ran several simulations
and plotted the results shown in Figure 8. The situation being simulated included one aperi-
odic and one periodic task. The average interarrival interval for the aperiodic is T,=200; the
constant execution time was S,=10. The period of the periodic task is different for each curve
(see the legend in Figure 8). Each curve plots the average latency for the aperiodic events,
E[W), as a function of periodic utilization, U,. For all curves, the budget and replenishment
period of the sporadic server are S=10 and T,=100, respectively.

E[W], Varying T, and U, for T,=200

70

60
50— : - Tp=10
- Tp=250
® ////'/ / — Tp=500
: -~ Tp=1000

M

£

£

2 30

z /M = Tp=10000
20 - Tp=100000
101
0 0 : 0.’10 i 0.‘20) 0.’30 04.40 ’ 0.’50 i 0.‘50 0:70 i 0?80 ' 0.90 '. 1

Periodic Utilization (Up)

Figure 8: E[W] = {(T,, Up) for T,=200, S;=Sss=10, and Ts=100

16 CMU/SEI-2004-TR-017

Some observations about the curves in Figure 8 follow:

e Given a period of the periodic (T), the average latency of the aperiodic task depends on
the periodic utilization. The intuition for that statement is that the opportunity torun in
background diminishes as the utilization of the periodic task, Uy, increases.

e The curve for the smallest periodic period looks like a standard queueing curve (see
Figure 1). The curve with the largest period looks like it aspires to be a straight line, sug-
gesting that, as the period of the periodic decreases, queueing-theoretic effects are domi-
nating. As the period increases, we are seeing a linear combination of end effects.

e The curves start and eventually reach the same maximum. The intuition for that statement
is that when the periodic utilization is 0, the difference in period is immaterial. Further-
more, all the curves eventually reach a point at which there is no longer an opportunity to
run in background. This point may be reached at different utilizations for different curves
(ie., different values of Ty). '

Next, we explore in more detail the effect of varying these parameters and develop detailed
 insight for some of the cases and empirically based insight for other cases. First, in Section
4.2, we look at the special case when periodic utilization is zero; effectively, there are no pe-
riodics. Then, in Section 4.3, we examine the other extreme where the utilization of the peri-
" odics is sufficiently high so that the aperiodic only executes when the needed budget is avail-
able from the sporadic server. Finally, in Section 4.4, we examine the case in which the
period of the periodic is very small and apply queueing theory to give us insight into the na-
ture of the curves in Figure 8.

4.2 Special Case of No Periodics |

When there are no periodics, the CPU is totally available to the aperiodic task. It is exactly
the same as a classical queueing problem, so Equation (2) is applicable (which is duplicated
below for convenience). '

(p Y EIS,] | | | |
EW]= (1—;)](25[Sa]}w[s,,] @

Using the example from Figure 8 where S, =10, T, = 200, and p = S,/T, =.05 and substitut-
ing into the formula, we get the following solution: ~

| .05 100 "
E[W]= (—9—5)(-—23) + 10 =10.26 |)

CMU/SEI-2004-TR-017 17

The solution above is very close to what is shown in Figure 8—10.25 for U, = 0. For given
values of S, and T, (which are 10 and 200 in this case), all the curves are “anchored” at this

point.

4.3 Special Case of No Background

When the periodic tasks consume enough of the CPU such that there is no background avail-
able for the aperiodic events to exploit, all of the aperiodic task’s processing must be per-
formed within the budget of the sporadic server. In our example (that is, S;=10 and T=100),
only 10 ms’ of time running at foreground priority is available every 100 ms through the spo-
radic server.

To help explain further, we provide the following analogy. Imagine customers queueing up to
a teller’s window in a bank. In the no-periodics case, the teller continuously processes cus-
tomer requests. In the no-background case, the teller takes care of one customer (recall that
the customer request exactly matches the sporadic server’s budget of 10 ms) and then does
other non-customer work (e.g., paperwork) for 90 ms, while the next customer impatiently
waits. From the point of view of customers in the queue, each customer seems to be taking
100 ms. (Let’s pretend that customers in the queue cannot distinguish between real customer

" work and paperwork.) The only saving grace is that customers are pleasantly surprised to find
out that once they reach the teller, their request only takes 10 ms. Consequently, from the
point of view of customers in the queue, S, = 100; from the point of view of the customer
being serviced, S, = 10. To reflect this in the formula, we denote the service time from the
queueing perspective as Sy, service time from the server perspective as S, and traffic inten-
sity from the queueing perspective as pg. This more general formula is

g =(Lo | B8 1), s) ©)
W g, | 2ms,) " |

Again, using the example from Figure 8 where S, = 10, S, = 100, T, = 200, and pq = S¢/T, =5
and substituting into the formula, we get the following solution:

EW]= ('—5—)(10000) +10=60 :)
SA 200

The solution above is also very close to what is shown in Figure 8—62.4 ms.

® Using milliseconds is arbitrary but a little more concrete than saying “units of time.”

18 CMU/SEI-2004-TR-017

4.4 Special Case of Continuous Background

The two previous sections discussed two special cases: Uy=0 and U;=.9, no periodiés and no
background, respectively. Our next challenge is to understand the “curves” between these two
extremes: We chose to study what we have been calling the “continuous background” case.
This case is unrealistic but useful because it reveals much of the problem’s queueing-
theoretic structure. :

When the sporadic server has exhausted its budget, the only way for aperiodics to execute is
in background. If S,=5 and T;=10, background becomes available in chunks of 5; if Sy=.5 and
T,=1, background becomes available in chunks of .5; if S;=.05 and T;=.1, background be-
comes available in chunks of .05, and so forth. The smaller the period, the more “continu-
ously” background is available. Continuing to reduce S, and T;, in this manner results in
background being very frequently available in infinitesimal quantities—a situation we call
continuous background. In this case, background processing is equivalent to being continu-
ously processed in a degraded processor. For example, when Up=.5, background processing
in the continuous case is equivalent to executing in a CPU that is half the speed of a full
processor. This equivalence to a degraded processor is what makes this an interesting and
illuminating special case.'

A Sample Timeline. It’s helpful to consider a sample timeline to see the different types of
time experienced by aperiodic events in this case of continuous background.

Immediately prior to the beginning of the timeline shown in Figure 9, assume that the proces-
sor is idle and the sporadic server is loaded with its entire budget of execution time. When the
first aperiodic event occurs at t = 100, it is immediately served by the sporadic server. We
assume that Sy, = S, = 20, Ty, = 145, U,=.5 and that T, is infinitesimally small. Since the spo-
radic budget is equal to the aperiodic service time (remember we constrain our assemblies to
adhere to this restriction), the aperiodic that starts at t=100 completes within the sporadic
server’s budget of 20 at t=120.

10
On more than one occasion when we described this special case, we were asked, “What about the

deadlines of the periodic processes, aren’t they being missed?” Or, “If a rate monotonic priority
assignment is being used, why does the sporadic server execute at a higher priority?” First, we
could pretend that the deadlines are very long and we are using a deadline monotonic priority as-
signment. However, we are actually ignoring the periodics. The whole point of considering this
case is to gain some understanding of the curves in Figure 8. In fact, by treating background proc-
essing as a degraded processor, the periodics effectively disappear. ’

CMU/SEI-2004-TR-017 19

Replenishment Replenishment

Aperiodic arrivals

100 120 140 155

195 225 245 255 265

“Backlog time” due to “Backlog” tim.e dl}e to
backlog of periodics backlog of periodics
Processing with Degraded background Processing with
sporadic server processing sporadic server

Figure 9: Sample Timeline

“Backlog” Time. While the sporadic server is working, a backlog of undone periodic work is
accumulating. At t=120, this backlog is equal to S,*U, = 20*.5 = 10. However, while con-
tinuously working on this backlog of 10 units of periodic work, more undone periodic work
accumulates—in this case, 10%.5. This accumulation continues until the work is finished. The
following expression is how long it takes from the time the aperiodic event arrives at t=100
until both it and the backlog have completed:

- ®

S, +SU,+SUL+SU;+8U,+=

For our sample timeline, S,/(1-Up) = 20/(1-.5) = 40, which means the backlog interval com-

pletes at time t=140.

Equation (8) gives us insight into how to generalize the no-background result. Recall that for
the no-background case, S, = Ts;. However, the more general result for arbitrary values of U,
is Sq = S4/(1-Up). Notice that since S, = Sg, When U, = 1-S,/Ts (that is, the periodic utiliza-
tion is 1 minus the sporadic server utilization), E[Sq] = Tss.

Degradéd Background Processing. Next, we focus our attention on the block of processing
that starts at t=155. That block represents an aperiodic arrival that is completely executed in
background. In effect, it is completely executed in a degraded processor. In this example, U,
= .5. As a result, the processor is degraded by 50%, and consequently, we would expect the
20 ms service time to take 40 ms. In general, we would expect the S, service time to take
S./(1-U,). Notice that the degraded service time (when executing completely in background)
is equal to the service time plus backlog time when executing within a sporadic server.

CMU/SEI-2004-TR-017

“Hybrid” Processing; Next, we consider the processing that starts at time t=225 in Figure 9.
In this case, service starts in background. Then, when it is partially complete, the sporadic
server’s budget is replenished, and the remainder of the processing is done in the sporadic
server. The case depicted by the timeline shows that half of the service is completed in back-
ground, and half is completed in the sporadic server. Note that we are studying the applica-
tion-level sporadic server, so whatever budget is not used is lost. In our example, five units of
time remain to be processed in the sporadic server. Therefore, the five units of remaining ca-
pacity are lost.

The background processing requires (.5*S,)/(1-Uy), and the sporadic server and backlog time
also require (.5*S,)/(1-U,). As a result, the total is Sy/(1-Up); this is true regardless of the frac-
tion that completes in background.

4.4.1 Computing Average Queueing Time (E[Q])

Above, we argued that it does not matter whether an aperiodic arrival starts and completes
within the sporadic server (i.e., the execution budget was sufficient to process the aperiodic
event), gets processed completely in background (i.e., no execution budget is available), or is
a hybrid (i.e., the execution budget was replenished prior to completion of the aperiodic
event). The customers in the queue always see a delay of S,/(1-Uy) for each customer served.
This fact enables us to compute the average time in the queue, which under a heavy load is
usually a major contributor to average latency (see Figure 1 on page 7). To predict the queue-
ing time, we can use Equation (3) as follows: '

E[Q]= Py E[S,] , where S;=S./(1-U,) and p;=S//T, | A)
1- p,)\ 2EIS,] ! e

For the situation in which T,=1 and T,=50, 250, and 500, Figure 10 shows 6 curves;'' three
curves show predicted queueing time and three show actual results from a simulation.

I Note that the predicted and actual lines in Figure 10 are so close, their respective curves are diffi-
cult to distinguish.

CMU/SEI-2004-TR-017 21

E[Q] vs Up

40.00
35.00
30.00 / f | —+— Prediction Ta=50
25.00 / / —e— Prediction Ta=250
20.00 / / --o - Prediction Ta=500
. / / —— Actual Ta=50
1500 / /[» —— Actual Ta=250
10.00 —— Actual Ta=500
5.00 r,,/// / /
0.00 O :a—éﬂséé, - :

000 020 040 060 0.80 1.00

Figure 10: Predicting E[Q]

4.4.2 Computing Average Service Time (E[S;])

Figure 11 below highlights the actual service times for the timeline shown above in Figure 9.
Note that while S, in Equation (6) i is the same regardless of whether an arrival is processed in
the sporadic server, in background, or as a hybrid, the actual execution, S;, varies depending

on the situation.

100 120 140 155 195 225 245 255 265

Figure 11: Differing Service Times for the Aperiodic Ain'va_ls

The service time for the arrival serviced at high priority by the sporadic server is S,. The arri-
val that is executed completely in background has an execution time of S; =

S =S / (-U) The arrival that executes as a hybrid (where a fraction, a, of its execution
time completed in background and the rest with the sporadic server) has an execution of S; =

S, +(1-a)S,.

These differing service times pose a challenge for deriving an exact formula for predicting
average latency. The challenge is to determine the probability associated with each case

above.

CMU/SEI-2004-TR-017

Overall Approach. The three different situations shown in Figure 11 above can be distin-
guished by where their busy periods12 start relative to when replenishment occurs and then by
the length of their busy periods. For example, if the following conditions are true, the busy
period will consist of one service time of duration S, (for the first job, which executed within

the sporadic server) followed by n-1 service times of length S .

e Replenishment occurs during an idle period.
e Sometime later, a busy period starts.
e The busy period has n jobs.

o The busy period completes before the next replenishment time.

Another busy period might start before the point of replenishment, continue past the point of
replenishment, and have a duration less than Ty In this case, the busy period might comprise

n-1 jobs of length S, and one job of length a8, + (1 - @)S,, (where & <1).

E[S,] depends on the amount of time from the beginning of the busy period until the point of
replenishment (or what we call the time to replenishment) and on the length of the busy pe-
riod. Because of that, our approach is to determine the distribution function describing the

. time to replenishment for the start of a busy period and use that value in conjunction with the
distribution function for the length of the busy period as the basis for computing E[S;].

Let Tr be the random variable denoting the time to replenishment at the beginning of busy
periods. Our goal is to compute

EIS,]= [EIS,|Tr=1dF;, () : (10)

[0,Tss)

where E[S; | Tr=t] is the conditional expectation of S, given that the time to replenishment is
Tr=t and Fr(t) is the cumulative distribution function (CDF) for the time to replenishment.
Given that Tr can be neither negative nor greater than the replenishment period, t can only
take values in the interval [0, Ts]. The CDF is the probability that Tr is less than or equal to t
(represented as Pr(Tr<t)).

To gain insight into the nature of the distribution of Tr, we ran several simulations and plotted
the histogram shown in Figure 12 for one of them. The parameters for this simulation were
S«=10, T=100, U,=.60, S,;=10, T,=200, and Ty=1. '

12 A busy period is a continuous interval of time during which the server (or processor) is busy.

CMU/SEI-2004-TR-017 23

Each bar except the first bar represents the average probability density over the interval cal-
culated by taking the proportion of samples falling within the interval divided by the length
of the interval. The first bar is the proportion of samples whose busy period starts at Tr=0.

o
&
N
o
o | ned[Prar=0)
Tf__ -
o
/‘__‘
/-\ _
o |]
5 =
c
10
8 -
=
8 -
=
° r | T T 7 |
0 20 40 60 80 100

Tr

Figure 12: Histogram of Tr

Notice that Tr has what appears to be a uniform density between Tr>0 and approximately 75,
has a much higher density (approximately 0.716) at Tr=0, and has a density that tails off from
75 to 100. Therefore, it appears that fr(t), the density function of time to replenishment, has

the form

au,(t) fort=0

frn®= for t in (0,T,, —h) o (11)

T,-h

S5

d@) fortin[T,-hT,]

where a is a constant and u(t) is the Dirac delta function [Kleinrock 75]. This result moti-
vated us to break Equation (10) into two terms: one for Tr=0 and one for Tr>0 as shown in

Equation (12) below.

E[S,]1=EIS, | Tr=01Pt(Tr =0)+ [EIS, |Tr=11f, ()t (12)

(0,Ts5)

Evaluating Pr(Tr=0). To understand how to compute Pr(Tr=0), consider Figure 13 below.
The x-axis is time, and the y-axis is time to replenishment (Tr). Time to replenishment starts

CMU/SEI-2004-TR-017

at Tr=0 and then stays at that level until a busy period starts due to an aperiodic arrival. At
that moment, the sporadic server’s budget is consumed, and the next replenishment is sched-
uled to occur one replenishment period later, making Tr=Ts;. Tr then decreases at a rate of one
until it reaches zero, and then replenishment occurs. Replenishment can occur either during a
busy period—-a dark region on the bottom timeline—or during an idle period. If it occurs dur-
ing a busy period, Tr is once again immediately set equal to Tg and starts to decrease. If re-
plenishment occurs during an idle period, Tr remains at zero until the next arrival occurs.
When that happens, Tr is set equal to Ty, and starts decreasing.

Tr“ —x, —]

| AN AN ANIANANIAN
T THETETIET

Figure 13: Time to Replenishment and Busy Periods

v

v

The question is, how do we characterize the proportion of time in which the system is in the
Tr=0 state? First, note that several busy periods can occur during the period of time from
Tr=T,, to Tr=0. In fact, our current analysis depends on the replenishment period being large
enough for several busy-idle cycles to occur during one replenishment period. However, at
most, one of those busy periods can be preceded by an interval in which Tr=0. And such an
interval (of Tr=0) only occurs when the previous replenishment occurs during the idle inter-
val that immediately precedes the busy period.

To compute Pr(Tr=0), we will associate one busy period with each time a replenishment oc-
curs. If replenishment occurs during an idle period, we will associate it with the first busy
period after the replenishment. If the replenishment occurs during a busy period, that period
will be associated with it (see Figure 13 above). Therefore the interval denoted by X; in
Figure 13 always begins during (or at the beginning of) a busy period associated with a re-
plenishment.

Tr=0 occurs when a busy period has a replenishment associated with it and when the replen-
ishment occurs during an idle interval. Assuming these two events are independent, Pr(Tr=0)
= pr*pr Where pr = Pr(the busy period is associated with a replenishment) and p; =
Pr(replenishment occurs during an idle period). To calculate p; and pg, we will use some re-
sults from renewal theory.

A Result from Renewal Theory. A renewal process is defined as a stochastic process that
counts the number of arrivals of events, N(t), that occur in the interval [0,t] where the time
between arrivals is determined by a sequence of nonnegative, independent, identically dis-
tributed random variables {X;, i=1, 2, ...}. X is the time between arrivals i-1 and i [Ross 96].
N(t) can then be defined in terms of X;.

CMU/SEI-2004-TR-017 : 25

N(t)=max{n|iX,.St} (13)
i=1

An alternating renewal process is defined as a sequence of random vectors (Z;, Y;) where Z,

" occurs, followed by Y;, followed by Z,, followed by Y, and so on. You can think of a system
as being in one of two states: it is in state “on” for an interval of length Z,, followed by state
“off” for an interval of lengthY;, and so forth. The Z;s are independent and identically dis-
tributed, as are the Y;s. We will use the following theorem from Ross where P, (t) is the
probability that the system is “on” at time t [Ross 96].

Theorem: If P,,(t) = Pr(system is on at time t) and E[Z;+Y;] is finite (and the distribution of
Z.+Y; is nonlattice') then

. _ E[Z,.]
imF)= By 1+ Bz, (49

This theorem says that the limiting probability the system will be “on” is equal to the propor-
tion of time that it is “on” during an average on-off cycle.

Calculating p;. We can view an on-off cycle as an idle interval, I;, followed by a busy period,
B;. If we consider the idle interval as “on time” and use the above theorem, we get the follow-

ing equation:

___EL
P " BB+ BIL) | 4

Calculating pg. Recall that py is the probability that a busy period is associated with replen-
ishment. We can define a renewal as the time at which the sporadic server’s budget is con-
sumed and X; (Figure 13) as the time between such renewals. To compute pg, we must deter-
‘mine the average number of cycles that can occur during an interval between renewals, where

acycle is C=B;+I;:

_ _E[BI+Ell]
Pr= E[X,] _ (16)

If the cycle associated with replenishment is thought of as an “on interval” and the other cy-
cles during X; are thought of as an “off interval,” Equation (16) can be viewed as another ap-
plication of Equation (14). Therefore, to determine pg, we first need to determine E[X;].

13 A nonnegative random variable is said to be laftice if it takes on values only at points that are mul-
tiples of some nonnegative number, d [Ross 96].

26 - CMU/SEI-2004-TR-017

Calculating E[X;]. Note two things:
1. Xjisequal to Ty if the i" replenishment occurs during a busy period.

2. X;is equal to T plus the remaining portion of an already started idle period, if the i"
replenishment occurs during an idle period.

Therefore, we need to understand the distribution of the remaining portion of idle time to de-
termine the distribution for X;. I denotes idle time. Since we assume that the arrival distribu-
tion is exponential and the exponential distribution is memoryless,' the idle time distribution
must also be exponential [Kleinrock 75].

Let Iz(t) denote the remaining idle time at time t. This time is known as the residual time or
the forward recurrence time.

The limiting distribution for Ig(t) is

Pr(l, < %)= [F(©)d/ ELI) an
. 0 . .

where 1—7, (x) = I-F{x) [Ross 96]. Since I is exponentially distributed with mean T,, the

“memoryless” property of an exponential distribution would suggest that Iis also exponen-
tially distributed with the same mean. Using Equation (17) to compute the distribution of I
confirms this.

Using the distribution of I and letting pp = 1-p; we can compute the distribution for X; as fol-
lows:

Pr(X, < x)=Pr(X, < x| Busy)p, + Pr(X, < x| Idle)p, * for x>T,
Pr(X,<x)=0 - for x<T,
Since we know that X is Ty when replenishment occurs during a busy period, the first term is

simply 1*pg. The second term represents the case in which replenishment occurs during an
idle interval and comprises Ty plus some remaining idle time. Therefore

Pr(X,<x)=p; +Pr(T, +1, <x)p, for x2T,, (18)

Figure 14 below shows the shape of the cumulative distribution function, Fx(t), for X;.

4 Memoryless means that the amount of idleness that has already occurred does not affect how much
idleness is left for any given idle interval.
15 Busy means replenishment during a busy period, and idle means replenishment during an idle pe-

riod.

CMU/SEI-2004-TR-017 27

Fxi(x) Fx(x)
- .

¢ ‘ |

|
TSS Tss
Figure 14: CDF for X;

The expectation of X; can be calculated by conditioning on whether X; occurs in an idle or
busy period, that is

E[X,1=E[X,|Busylp; + E[X; | Idlelp, =T, py + (T, + E[I])p, =T +E[I.]lp, (19)

Substituting the expression for E[X;} from Equation (19) into Equation (16) results in this
equation:

E[B.]+E[1]
_ E[B, i . 20
Pr =T, 3 El,1p, e

which is equal to the probability that a cycle is associated with a replenishment. Since
Pr(Tr=0) = p/*pr, the following equation applies:

p,(E[B,]+ EL1;]) Q1)
rts + E[IR]pl

Pr(Tr=0)=

Evaluating E[S | Tr=0]. Just as a reminder, our goal is to use Equation (12) to compute
E[S,]. We are still calculating the first term of Equation (12). We have worked out Pr(Tr=0),
and now we turn our attention to E[S;| Tr=0]. '

To compute E[S,| Tr=0], we condition on the number of arrivals in a busy period. In our case,
the distribution for the number of arrivals, BP, in an M/D/1 busy period"® is the following

[Kleinrock 75]:

A~

™ where p, =%— (22)

a

n-1
Pr(BP=n)= —(EET)—e

16 We are justified in using this since the previous section argued that, from a queueing perspective,
S, is equal to SJ/(1-U,) regardless of whether it executes within a sporadic server, in background,

or as a hybrid.
28 CMU/SEI-2004-TR-017

When Tr=0, the busy period always starts with an arrival that is “greeted by” a fully loaded
sporadic server. This first arrival will have a service time of S,. Depending on how large Ts, is

relative to S, , the busy period continues with some number of additional arrivals that execute

in background and consequently have service times of § .- If the busy period is long enough,

jt might contain one or more “hybrid” service times as well.

For now, we will ignore the hybrid services (in which case, our éstimate will be on the high
side). Later, we will show an algorithm that accounts for the hybrid case. The following ex-
pression is a pessimistic approximation of the duration of a busy period of length i, given that
Tr=0:

S +G-DS, | 23)

This equation is pessimistic since it approximates a hybrid’s execution—which is
as, + (1 - a)S,—using simply S, . We use this approximation to compute an approxima-
tion for E[S,| Tr=0].

Given a very large number of busy periods (denoted as N) and the strong law of large num-
bers [Ross 96], there are approximately Pr(B}P:i)*N busy periods of length i [Cinlar 97].
Equation (23) expresses that for each busy period of length i, there is one arrival with a ser-

vice time of S, and i-1 with service times of S , . Therefore

S Pr(BP = i)NIS, +(i-DS,]
ELS, |T, =0]=+

3 Pr(BP =)N)()

i=1

which reduces to

S Pr(BP = i)(S, +(i-DS,]

— = i=1
E[S, |T, =0] — P | 24)

where Pr(BP=i) is defined in Equation (22) and E[BP}=1/(1-p).

Therefore, an approximation for the first term in Equation (12) is

p,(E[B,]+E[L])
T, +E[l;]p,

=1 (25)

S Pr(BP = i)S, +(-DS,]
) E[BP]

E[S, | Tr =0]Pr(Tr =0) = (

CMU/SEI-2004-TR-017 29

Calculating J‘E[SS | Tr =11f;,(t)dt . Our next step is to consider the case in which Tr is
(0,Tss] ’
greater than zero. To do this, we need to determine the cumulative distribution function for

Tr, Fr(t).

Recall that Tr is a random variable denoting the time to replenishment for the beginning of a
busy period. To compute Pr(Tr <t), we condition on whether Tr equals zero or is greater

than zero. Recall that

Pr(Tr <t)=Pr(Tr <t|Tr =0)Pr(Tr =0)+Pr(Tr <t | Tr > 0)(1—-Pr(Tr =0)) (26)
The first term reduces to Pr(Tr=0); Equation (21) addresses this case.

Tr>0 occurs when X,," the time since the last renewal (known as the age or the backward
recurrence time), is less than Ty,. Therefore, Pr(Tr <t | Tr > 0) is equivalent to

Pr(Tr<t| X, <T,), however
Pr(Tr<t| X, <T,)=PiT, —-X,<t| X, <T,)=1-Pr(X, <T,-t|X,<T,) @0

Since the limiting distributions of the forward and backward recurrence times of a renewal
process are the same, we can use Equation (17) to compute Pr(X , <t)[Ross 96]:

Pr(X, <t)= [F,(§)dE/ EIX] (28)
, 0

Using Equation (28) and conditional probability and referring to Figure 14

© ey

Fo(§de [1a¢
0 (29)

Pr(X, <t|X,<T,)= =2 TL
Fo(d¢ J1ag ™
0

~

as

© oy

Therefore
T. -t t
Pr(TrStITr>0)=1-—Pr(XA <T, —t| X, <Tﬂ)=1—-—‘—}—=}-—

which is a uniform distribution over [0, Ts]. The cumulative distribution function for Tr is

17 The letter “A” in X, stands for “age.” If one considers a renewal to be a birth, X, represents the
time since the last renewal. This should not be confused with X, which represents the time be-

tween successive renewals.

30 CMU/SEI-2004-TR-017

Pr(Tr <1) = Pr(Tr =0) + —T’— (1-Pr(Tr = 0))

ss

and the density function for Tr is

1-Pr(Tr =0)
T

S5

fTr (t) -

dFT,t ® = Pr(Tr = O)u, () +

which is similar in form to Equation (11).

This results in

fELS, |Tr=11f, ()dt = | EIS, 1Tr = 2B =0) 4

(0,Tss] (0,Tss) s

(30)

Accounting for “blackout.” Figure 12 showed that Tr is not actually uniformly distributed
over the entire interval [0, T,] but instead is uniformly distributed over the shorter interval [0,
T,-h]. This distribution makes sense since each renewal occurs either during or at the begin-
ning of a busy period. By definition, the next busy period cannot begin until the current one
ends, resulting in a “blackout” period, H, for Tr from Ty-H to T;. Let H be a random variable
denoting the duration of this blackout period.

Assume that H=h. Due to this blackout period, Pr(Tr <t|Tr > 0) is not actually equivalent
to Pr(Tr <t| X, <T,) . Rather, it is equivalent to Pr(Tr <t|h < X , <T;) . This differ-
ence changes Equation (29) to

Fy(€)d j 1d¢

Pr(X,<t|h<X,<T,)= (31)

—h

;.q__..;! oi—-.-

F ()¢ j g ™

and Equation (30) to
[mis, [Tr=nf, almar= | B8, 1T =02 =0 4
0151 (0,Tss~h] T;s - h

For H=h, f1,(t | h) has the form

CMU/SE!-2004-TR-017 31

au,(t) fort=0

fTr(t|h)= -7:—1:‘}: fortin (0T, —h)

ss

0 fortin[T,—hT,]

where d(t) in Equation (11) is actually 0 for any given H=h. Now we must account for the
fact that H is a random variable; therefore, we must determine fr(t):

fr, () =Pr(Tr = 0)uy () + A= Pr(Tr = 0)) j fr @t | 1) fy (W)dR

(0,Tss]

Letting P=Pr(Tr=0) and Q=1-P, we have

fo =P + 0] ——

(0,Tss] ~ ss

Sy (B)dh (32)‘

where fi(h) is the density function for H. To determine the distribution function for H, we
condition on whether the first busy period in the renewal interval is one that starts within the

sporadic server (SS) or is a hybrid (kybrid). Note that

fu(B)= f(R]|SS)Pr(SS)+ f (k| hybrid) Pr(hybrid) (33)
where Pr(SS)=p; and Pr(hybrid)=1-p;. '

First, we will focus on f (| SS) . In this case, replenishment has occurred in the idle interval

before the busy period starts. The busy period (and hence the blackout period, H) starts when
the next arrival occurs. H can take on only a finite set of values.'* When the duration of the

busy period is less than or equal to T, Pr(H = S . |SS)=Pr(BP=1),
Pr(H = 28 . | S8)=Pr(BP =2), and so forth. However, when the duration of the busy pe-

riod is greater than Ty, H can take on other values—in genéral, those in the following set:

LCM (§a,TH)}

a

{ S modT, | j=1,

For example, if § »=30and T,=100, H can be equal to 30, 60, 90, 20, 50, 80, 10, 40, 70, and
0. The probability function for this can be expressed as

A
18 Assuming S is rational.
a

32 CMU/SEI-2004-TR-017

Pr(H = jS,modT, | SS) =Pr(BP =i*L+ j)
LeM (S, T,)

b

forL= j=1..,Land i20

a

and therefore

L ~ o R
Fu(R]SS)= uy(h— jS,modT,)) Pr(BP =i*L+ j) ” (34)
i=0 .

Jj=1

Now, we will focus on f (k| hybrid) . In this case, replenishment occurs during a busy period
of which the blackout period is a subinterval. When the busy period is less than T, in dura-
tion, we assume that replenishment is equally likely to occur at any time during that busy pe-
#iod. Therefore, the time from replenishment to the end of the busy period is uniformly dis-
tributed over the length of the busy period, that is

£, (h| Hybrid, BP=i,iS, <T,) = ; for he[0,iS,]

a

=0 otherwise

When the length of the busy period exceeds T, the first replenishment must be within Ty of
the busy period’s beginning. If the first replenishment is exactly at the beginning of the busy
period, the blackout period is m = iSA‘z modT7,, . As the replenishment moves away from the
beginning of the busy period, h decreases until it is 0, jumps to Ty, and then decreases until
its value becomes m again when the replenishment occurs at Ts;. Therefore, when the busy
period is greater than or equal to Ty, the probability density function of its length, H, is given
by

£, (h| Hybrid,iS, 2 T,) =;1- for he[0,T,]

= otherwise

Therefore

£, (k| Hybrid) = G,()Px(BP = i), where

i=1
1 A~
G,(h)y=———F—Jor he [0,min(S,,T,,)] (35)
min(S,,T,,) f ’
=0 otherwise

19 Recall that ug(x) is the Dirac delta function. Therefore, uy(x-a) has a nonzero (actually infinite)
value when x=a and is zero everywhere else.

CMU/SEI-2004-TR-017 33

Note that we have made the assumption that the distribution governing BP does not depend
on whether the busy period starts within a sporadic server or starts with a hybrid.

Combining Equations (33), (34), and (35), we have

fu(h)= Pr(SS)i uo(h— jS,modT,)i Pr(BP=i*L+j) +
Jj=1 =0

. (36)
 Pr(hybrid)) G, (k) Pr(BP =1)

i=1

Combining Equations (32) and (36), we have

fu®)=Puy) + Q Pr(SS)ZL:M (O Pr(BP =i*L+j) +
j=l i=0

. 37)
QPr(Hybrid) j' —L—ZG,.(h)Pr(BP=i)dh

(0,Tss} " ss ==

Integrating Equation (37), we have

£ ()= Pugt) + Q Pr(S)Y. M, ()3 Pr(BP=i*L+ j) +
=]

i=0
Tss

QPr(Hybrid) ;Pr(BP =D,)+ (38)

QPr(Hybrid) Y Pr(BP = i)-TLm(%-)
i=| B2 i ss

Sa

where
; h{T Tss.S; J for t<T, —iS,
Ii(t)____ 1, ss W
—E—-In(ﬁ} fort 2T, —i§a
i, t
and

34 CMU/SEI-2004-TR-017

1
M (t)={ T, = j8, modT, _
0, for t>T, - jS, modT,

, for t<T, - j§, modT,

Now that we have fr,(t), we are ready to evaluate the right-hand side of Equation (10):

E[S,)= [EIS,|Tr=1ldF;, @)=
{0,Tss] '
PELS,|Tr=0] +
T, - j$, modT,,

L 1 oo
Pr(SS = Pr(BP=i*L+j E[S, |Tr=tldt+
Q Px()Z(T“_jsamodTJZ (BP D) ![|Tr =1}

j=t i=0

Tss
_§;j . 1 T Ty ~iS,
- QPr(Hybrid)| D Pr(BP =1) ——ln| —— [ELS, | Tr=11dt +
. 55 a 0

Sa

i=] lS a -iS
T,
1 | ln(-T&)E[ss |Tr=1)dt |+
iSa T, -iS, t
o 1 T, T '
3 Pr(BP =i)— | In| == |ELS, | Tr =1ldt
i=lTT”-J+1 T:“ Y t

Evaluating E[S; | Tr=t]. To complete our analysis, we need an algorithm to compute
E[Ss] Tr=t]. Recall that we offered a pessimistic estimate above. A more general form of
Equation (24) is given by :

3 Pr(BP =i}V, (1
E[S,|T, =t]= =

E[BP]
where V;(t) is the total duration of i service times, starting at Tr=t. Calculating V;(t) requires

calculating how many hybrids will occur during the busy period and what the service time is
for each of those hybrids.

The number of hybrids in the busy period is given by

k,.(t)=[ls“ +T, —tJ+[(zSa +T, —t)modes]_l

T, T

55 ss

CMU/SEI-2004-TR-017 35

A hybrid has one part that occurs before replenishment and one that occurs after it. The dura-
tion of the part that occurs before replenishment for the j™ hybrid is

t+(j-DT, }S

a

d,-(t)=(f+(‘j—1)Tss)—l

The total duration of the hybrid is

d,(O)+S,-d,O1-U,)=5,+d,0U, =8,1-U,)+d,®)U,

The duration of the busy period is

RETCYR :)
i-k@S, + 5 (8,a-U) +d,00,)=~k 0,8, +>.d,0U, for 1>0
Jj=1 Jj=1
ki (Ty,)

S, +G-1-k,T)U NS, + D d,T)U, for t=0
j=1

V@)=

4.4.3 Areas of Ongoing Work

In Section 4.4.1, we made several simplifying assumptions that we are in the process of re-
laxing:

e In computing Pr(Tr=0), we assumed there would be many busy-idle cycles over the
course of a replenishment period. In other words, we assumed that (E[B]+E[1])/Ts < 1.
When Ty, is small or the traffic intensity is high enough to cause E[B] to exceed Tg, this
assumption is violated. Such a violation can cause inaccuracy in our prediction of
Pr(Tr=0) and, in turn, an inaccurate weighted average of E[S,| Tr=0] and E[S,| Tr>0].

e When computing the blackout time for the hybrid case, we assumed that the first replen-
ishment of a busy period is equally likely to occur anywhere in [0, rnin(i§ 2+15) 1. How-
ever, the length of the blackout period might be constrained after a busy period occurs.
For example, when one busy period ends very close to replenishment and the next one
starts shortly thereafter, there is a constraint on how short the blackout period can be.
Figure 15 shows an example of that situation. The busy period BP; was hit by a replen-
ishment at time 460, creating a blackout hy=40 for when the following busy period could
start. We can see that the blackout h; created by BP; is 30, but even if BP, started right
after BP, finished at time 500, the blackout h, could be no less than 20.

¢ In computing E[Sy| Tr=0] and E[S,| Tr=t], when t>0 we condition on the number of arri-
vals in the busy period and then uncondition using the M/D/1 busy period distribution
(see Equation (22)). However, due to an effect known in renewal theory as length biasing
[Ross 96), there is a bias toward replenishments occurring in relatively long busy periods.

36 CMU/SEI-2004-TR-017

In other words, the distribution of the lengths of hybrid busy periods is different from the
distribution of all the busy periods; the probability is shifted toward longer busy periods.

Replenishment 1,

Busy Period e

BP, BP, BP;

- Vv

400 500 600

Figure 15: Tr Blackout Dependency on Previous Blackout

We are currently looking into generalizing the theory to account for the cases in which our
assumptions are not appropriate.

4.4.4 Empirical Evidence

In this section, we offer two examples of using the theory developed in the previous section.
- Figure 16 shows a histogram showing the predicted and simulated probability density for
~ time to replenishment.

The spike shown at the beginning of Figure 16 for the prediction curve represents Pr(Tr=0),
and the remainder of the curve is fr(t).

CMU/SEI-2004-TR-017 37 .

[=]
N
(=]
4/1 Pr(Tr=0) . .
| - Predicted Density
o ,
E . U Observed Density
f\~’
/"\~‘
o
5 -
(=]
Vo)
S - _
o = —] — 1. M
o r T T T T |
0 20 40 60 80 100

Tr

Figure 16: fn{t) Predicted Versus that Observed Through Simulation

The next three figures (using the same parameters as Figure 8 where T, is set to 1) show pre-
dictions versus simulations for the average latency (E[W]), average queuing time (E[Q]), and
average service time (E[S,]) respectively. The predictions for the average queuing time ap-
pear to be fairly accurate. The predictions for average service time appear to be accurate until
U, exceeds 0.65. As discussed in Section 4.4.3, as the average duration of the busy period
increases (which happens as U, increases) and starts to approach Ty, our approach for calcu-
lating Pr(Tr=0) becomes less accurate, whlch in turn, affects the accuracy of E[S;].

CMU/SEI-2004-TR-017

38

Predicted vs. Actual E[W], Varying Up for Tp=1 and
' "Ta=200

20

iy
()]

E[W] In ms
—
o
L

-o- Actual
-+ Predicted

0 .01 02 03 04 05 06 07
Up

Figure 17: E[W] Predicted Versus that Observed Through Simulation

3.5

25

1.5

E[Q] in ms

0.5

Predicted vs. Actual E[Q], Varying Up for Tp=1 and
Ta=200

/

/

/ —- Actual
—— Predicted

P

—

—r—

o ©01 02 03 04 05 06 07
Up

Figure 18: E[Q] Predicted Versus that Observed Through Simulation

CMU/SEI-2004-TR-017

39

Predicted vs. Actual E[S], Varying Up for Tp=1 and Ta=200

-&- Actual
—— Predicted

OoON B O®

0 01 02 03 04 05 06 07
Up

Figure 19: E[Ss]b Predicted Versus that Observed Through Simulation

4.5 Single-Subtask Assemblies

In this section, we look at assemblies with three periodic tasks and an aperiodic task managed
by a sporadic server. Anticipating applying our theory to more general assemblies, we make
some observations about multitask assemblies.

Varying utilization equally. For this case, there is an aperiodic task and multiple periodic
tasks between which the periodic utilization is evenly divided. The average latency for the
multi-periodic case should fall within the extremes of the single periodic cases. The parame-
ters for this graph are T,=200, S,=S;=10, and Ts=100, while T, and U, vary accordingly.
This case is shown in Figure 20 except for when U, is large: we intend to investigate this fur-
ther.

40 S . CMU/SEI-2004-TR-017

Utilization Spread Equally Between Several Periodics

70

// — T, =(100, 250, 350)

50 . / - T,=100
40 = T,=350
30 /

? ./., /./‘/J
10 .

0 T T T 7 T T T T T

0 01 02 03 04 05 06 07 08 09 1
Yy

E[W]

Figure 20: Multi-Periodic Example—Utilization Evenly Divided

Varying utilization unequally. In the previous case, there was a single aperiodic task and
three periodic tasks. However, in this case, the total utilization of the periodics (which varies
from O to .9) is spread unevenly among the three periodic tasks. In the legend of Figure 21,
«8 .1.1” means that for a utilization level of U, .8* U, is accorded to the task whose period
is 100, .1* U, is accorded to the task whose period is 250, and .1*¥Uy is accorded to the task
whose period is 350. Additionally, we plot the single periodic case for T,=100 and T,=350.
Again, except for relatively large values of Uy, the single periodic cases create an envelope
around the multi-periodic cases.

CMU/SEI-2004-TR-017 41

Utilization Spread Unevenly Between Several

Periodics
70
60
50 — .8,.1, 1
— —18.1
40
E- —.1.1.8
30 - Just 100
20 -o- Just 350
10
0 1] [] [| 1] 1 ¥

0 0.1 0.2 0.3 0.4 0506 0.7 0809 1
u

P

Figure 21: Multi-Periodic Example—Utilization Unevenly Divided

4.6 Multi-Subtask Assemblies

We took the multi-periodic case shown in Figure 20 and turned each periodic task into one
that had multiple subtasks with arbitrary priorities. The graph in Figure 22 shows the results.

Utilization Spread Equally Between Several I-ABA Periodics

70
“T | 7/

—p
50 / — T, = (100, 250, 350)
40 - T;=100
—— T,=350

30 /
20._%.,//
10
O T T T T T T T T T
0O 01 02 03 04 05 06 07 08 09 1

Yy

E[W]

Figure 22: Multi-Periodic Example with Multiple Subtasks

42 CMU/SEI-2004-TR-017

Notice that the graphs in Figure 22 and Figuré 20 are identical. As long as the system is work
conserving (i.e., it continues to do available work without idling), the periodics’ priority and
subtask structures do not influence the average latency of the aperiodics. This lack of influ-
ence occurs because the periodic subassembly’s priority and subtask structure do not influ-
ence when background is available.

This allows an arbitrarily complex periodic task to be simplified to an equivalent periodic
single-subtask task.

4.7 Observations on the No-Background Case

Notice that in Figure 8, Figure 21, and Figure 22, the length of the periodic task’s period in-
fluences when the aperiodic task’s average latency reaches the point of so-called “no back-
ground.” To understand this situation, consider the two extreme cases: infinitesimal periods
(continuous background) and very large periods.

In the continuous background case, Sq approaches Ty, as U, increases. When Up=1-S,/Tss,
S, (which is equal to S,) is equal to Ty, This is the maximum possible value for Sy (as guar-

anteed by the sporadic server). Therefore, the continuous background case reaches a state of
“no background” when U,=1-S/T,. Notice that while the aiperiodic events cannot execute in
background, the processor is not necessarily fully utilized. For example, if S;=10, T.=100,
S.=10, T,=200, and U,=.9, then S;=T=100 and p=S4/T,=100/200=0.5. This means that, on
average, only half of the “degraded processor” is actually being utilized. In other words, only
half of the unused periodic utilization is used by the aperiodic task.

As the length of the periodic tasks’ period increases, the aperiodic task is able to use this un-
used capacity. When the period of the periodic tasks is very large, the aperiodic task can exe-
cute both within the sporadic server and in the large windows of periodic idleness.

CMU/SEI-2004-TR-017 43

CMU/SEI-2004-TR-017

44

5 Application of the Theory

In this section, we describe a collection of heuristics that encompass much of the observa-
tions and analysis performed in Section 4. We then describe a model problem from the do-
main of robotics and show how to apply these heuristics derived from the property theory to
the robotics model problem. -

5.1 Reasoning Heuristics

Much of this report has focused on providing a theoretical foundation for the continuous
background case with a single periodic task. However, important conclusions can also be de-
rived from empirical evidence. Sections 4.5 and 4.6 showed that with some targeted simula-
tions we can get a good understanding of aperiodic latency for a very general periodic task
set. Based on our theoretical and empirical understanding, we generated the following list of
heuristics:

e H1: For a given aperiodic service time (S,) and interarrival interval (T,), the best-case
average latency occurs when there are no periodics (Uy=0). The latency for this case is
predictable by Equation (4). ‘

e H2: For a given aperiodic service time and interarrival interval, the worst-case average
latency occurs when the periodic utilization is large enough so that aperiodics execute
only within the sporadic server (no-background case). The latency for this case is pre-

dictable by Equation (6), where S, =T ;. .

e H3: For the continuous background case, given U, E[Q] can be predicted accurately by
using Equation (9) and letting S, = S, . E[S] can be approximated by realizing that it is
a weighted average 6f S, and S , and therefore is between those two extremes. As U, gets
larger, $, starts to approach Ty, so there is very little room for background processing.
In this case (even though E[Q] increases), E[S] approaches S,. H3 applies to cases in
which U, is greater than 0 and less than 1-Sg/Ts.

e H4: For very large periodic periods, average latency as a function of U, appears to be
approximately the convex combination of the no-periodics (NP) and no-background (NB)
cases. H4 applies to cases in which U, is greater than 0 and less than 1-p. Therefore, in
this case

CMU/SE!-2004-TR-017 45

E[W]= (E [WNBI]_' 5 Y.])Up + E[W,,], where
_(_p)\ EiS;]
EW,,]= (1_ p)—_—ZE[Sa -+ EIS, Jand

A A2 &
E[W,,]= Ji;)—‘g—[f%-]-+ B[S,), where p =% and §, <T, and §, =T,
1-p J2EIS,] T, ,

The observations gleaned from the curves generated for average-case latency for aperiodic
events served by a sporadic server (see Figure 8) provided significant understanding of the
timing-related behavior of such events. Figure 23 below represents an abstraction of Figure 8
with the heuristics overlaid to illustrate how these heuristics support predicting aperiodic la-

tency.

Worst-Case
Average Latency
Average Latency ‘

for Large Tp

Average Latency

E[W] e - - - - & for Continuous

(Background
9

\
Best-Case

l Average Latency

Up

Figure 23: Heuristics Applied to the Curves

Notice in Figure 23, H1 (the best-case average latency) and H2 (the worst-case average la-
tency) serve to bound the aperiodic average latency, E[W]. Also notice that for a specific
value of Uy, H3 and H4 seem to provide bounds for E[W]. E[W], then, will fall between the
best-case and worst-case average latency dictated by H1 and H2, within the region further
defined by H3 and H4 for a specific Up.

In the next section, we apply these heuristics to a model problem.

46 CMU/SEI-2004-TR-017

5.2 A Robotics-Based Model Problem

To demonstrate the analytical and empirical foundations established in this paper, we apply
them to a model problem [Hissam 04] representative of a design problem posed for the ABB
industrial robotics product line.

The model problem expresses the high-level task structure used to convey robot movement
commands through a series of queues to ultimately control the various axes of a robot’s
arm(s). The model problem permits the incorporation of additional end-user tasks (or exten-
sions) in the controller similar to the addition of a third-party device driver in an OS. It is this
extensibility that motivates the use of this performance theory. That is, an extension will be
either periodic or aperiodic by nature. The reasoning framework discussed by Hissam and
colleagues [Hissam 02] can be applied to predict the average latency of periodic extensions
(see Section 2.2). The analytical and empirical foundations introduced in this report can be
applied to predict the timing behavior of aperiodic extensions.

In summary, the robotics-based model problem has
e periodic and aperiodic tasks
e tasks with hard deadlines and average-case latency requirements

o tasks (for example, controller extensions) whose behavior must be both predictable and
predictably invasive on other periodic tasks with hard deadlines

e requirements for predicting deadline miss rates

In the remainder of this section, we apply the performance theory in this paper to predict the
average-case latency of an aperiodic task within the robotics-based model problem.

5.2.1 Tasks in the Model Problem

Figure 24 provides a schematic of the open robotics model problem. In this discussion, we
simplify the model further by concentrating on only one task set—A-B-C (controlling a robot
with only one arm)—and one “plug-in”—task M.

CMU/SEI-2004-TR-017 : - 47

Main Computer

O ONEENES -

"*GDE/ 1) () }

(T -

OIOXOEE:
|

Figure 24: Tasks in the Robotics Model Problem

Tasks A, B, and C each convey commands through a series of queues. Task M represents a
third-party task extension to the robotics controller. :

Table 2 shows the applicable task performance specifications of the tasks in Figure 24.

Table 2: Performance Description of Model Problem Tasks

Task | Priority | Arrivals Execution Time

A Low Exponentially distributed | Exponentially dis-
with mean _ tributed with mean
75 ms 9 ms

B, High Constant Uniform
24ms 1-2 ms

C Very Constant 4ms Uniform

High 0.5-1 ms

M Med Exponentially distributed | Uniform
with mean 15-25 ms
100 ms

5.2.2 Analysis Setup

We are interested in two questions in particular:
1. Will including Task M cause Tasks A, B, and C to miss their deadlines?

2. What is the average-case latency of events handled by Task M?

To answer these questions, we take a closer look at Tasks A, B, and C.

48 CMU/SEI-2004-TR-017

Task A is a low-priority task that is handling a stream of aperiodic arrivals. Each aperiodic
arrival is broken down into a sequence of subitems and placed on the queue between Task A

and B.

Task B continues to periodically process a subitem from the Task A-B queue, further decom-
poses that subitem, and places the resulting decompositions on the queue between Tasks B
and C. ’

The period of Task B (i.e., 24 ms) is 6 times the period of Task C (i.e., 4 ms). That is true be-
cause for every subitem processed by Task B (generating 6 microcoordinates), Task C will
consume a microcoordinate from the Task B-C queue and send it to the Axis computer
(which itself takes about 1 ms). Task C then can consume all six microcoordinates on the
Task B-C queue within the period of Task B.

Ideally, Task A should never allow the queue between Task A and B (i.e., the Task A-B
queue) to empty. Unfortunately, Task A is only given low priority in the controller because,
under certain conditions, Task A may take an inordinate amount of CPU time to perform its
item decomposition. If Task A were assigned a higher priority relative to Task B or Task C,
Task A could cause either of those tasks to miss its deadline. At low priority, Task A is as-
sured not to interfere with the deadlines of Tasks B and C. However, with the inclusion of an
extension to the controller, Task A could be starved to the point that it could inadvertently
starve the Task A-B queue.

To solve this conundrum and ensure that Task A does have the opportunity to put at least one
subitem on the Task A-B queue within the period of Task B, Task A can be converted to use
the SSSA .2 In this case, Task A can be given just enough execution time to prevent the Task
A-B queue from being emptied. Further, given that Task A is following the SSSA, Task A can
now be treated like a periodic task. ' -

Understanding the interactions between Tasks A, B, and C and treating Task A as a periodic
task allow us to apply the results of Section 4.5 that deal with single-subtask assemblies. This
analysis asserts that assemblies with multiple periodic tasks can be analyzed by considering
single-task assemblies whose utilization (Uy) is the same as that of more complex assemblies
and by varying the periods between the smallest and largest periodic periods.

2 This point is another design issue that Hissam and Klein address in another report [Hissam 04].

CMU/SEI-2004-TR-017 _ 49

This means that the task set (A-B-C) in Figure 24 can be combined into a single periodic task
for which T, = 24 ms (Task B’s period) and the execution time is approximately 10 ms.”!
Figure 25 shows the final periodic single subtask created to support the analysis of the robot-

ics model problem.

Main Computer

Task A-B-
T =24

Up=10/24

sunnip

=up Periodic
«eap Aperiodic

Figure 25: Analytic Representation of the Robotics Model Problem

The performance parameters for the extension (i.e., Task M) can be taken mostly from Table
2. Task M is an aperiodic task managed by the SSSA. Its interarrival interval (T,) is 100 ms.

. The replenishment period for Task M is not specified; however, T must be > T, otherwise
the aperiodic task might be able to preempt the periodic task more than once during its period
and put the periodic’s deadline at risk. T, then, can (at best) take on the value of 24 ms.

The last two performance parameters for Task M are S, (budget) and S, (execution time).
The upper limit for S (given that T, =24 ms) is determined by the total utilization of the two
tasks in Figure 25. The highest value for S must be 14 ms, resulting in 2 total utilization for
Task M being 14/24 (Sy/Ts;). Finally for S,, Section 4 states in the governing assumptions
that S,=S,;; we will assume that Task M’s execution time is a constant 14 ms and perform our

analysis from this point.

5.3 Preserving Periodic Deadlines

The first question is whether Task M will cause the A-B-C task set to miss its deadline. This
set executes for 10 ms every 24 ms with a deadline at the end of its period. In the worst case,

21 Assuming the worst case, execution times for Tasks B and C are 2 ms and 6 ms, respectively
(from Table 2—recall that Task C will execute for 1 ms, 6 times during Task B’s 24-ms period);
Task A’s execution time is based on the time it takes to produce 1 subitem from its input stream:
approximately 1-2 ms. The sum of these approximate times is just under 10 ms.

50 CMU/SEI-2004-TR-017

Task M will preempt the A-B-C task set once for 14 ms, implying a worst-case latency of 24
ms for the task set and, hence, guaranteeing the set’s deadline.

5.4 Predicting Average-Case Latency

The second question is to predict the average-case latency of the aperiodic extension (Task
M). In this section, we apply heuristics from Section 5.1.

Heuristic H1—best-case average latency: S, = 14; T, = 100; p = S./ T, =14/100 = 0.14.
Solving for Equation (4), we get the following:

_(_p)\ Es.1
-

14 147
'(R)[zom]m | (39)

=15.13953

Heuristic H2—worst-case average latency: E[S,] = Tis; E[S;] = Sa; pg = Sq/ Ta =24/ 100 =
0.24. Solving for Equation (6), we get the following:

p,) Eis;]
EW]=|— £ |+E[S
: (l—pq][2E[Sq]J (5.

24 24* , '
e

=17.78947

Heuristic H3—bound on average-case latency for continuous background for a specific Up:
Since Uy=1 - (Ss; / Tss) in this model problem, H3 cannot be used.

Heuristic H4—bound on average-case latency for large T;, for a specific Uy: p=S,/T. =
14/100 = 0.14. Using the equation from H4, we get the following:

CMU/SE!-2004-TR-017 ‘ 51

=)Up + E[W,,],where

e El=

EW,, 1= () fE[fS]]+E[s Jand

E[S%] S,
E[W + E[S,],where p ——andS <T, andS =T,
wl= (1 p)ZE[S] y

a

For E[Wyp], we can use the result calculated for H1 above: E[Wyp] = 15.13953. For E[Wyg],
we can use the result calculated from H2 above: E[Wyp] = 17.78947. Then, solving for E[W],

we get the following:

W)= (E[WNB] EWy]
1-p
_(17.78947 -15.13953
'[.86
=16.42342

)U + E[W,,;]

)(10/24)+15.13953

Heuristic H1 tells us that for the model problem, we can expect the average latency to be no

better than 15.13953 ms. Further, H2 tells us that we can expect the average latency to be no
worse than 17.78947 ms. We can refine the lower bound for U, = 10/24 = 0.4166 (see Figure
26) by applying H4; the result is 16.42342 ms. ‘ '

By overlaying the results from the heuristics just computed to a plot of curves representing
Jatencies observed through simulation, it is possible to check the heuristics. Figure 26 was
created through simulation. All the performance parameters from Figure 25 were used in the
simulation except for T, and U,, which varied. The simulation was run for 13 values of U,
(specifically 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95) for each T,
shown in the legend of the figure. The average latency for the aperiodic Task M was com-
puted, recorded, and plotted based on the specific U, and Tj, for that simulation.

52 CMU/SEI-2004-TR-017

Plot of E[W] for Model Problem by U, for Various T,
18 U,=04166 5
T Y ‘
175 /'//;/ P bf
17 1 Worst-Case Latency -~
i] Observed 1
g 1 17.78476 ms e
[16.5 } Predicted -3 Tp=24
- /)/l:‘_'(—— Tp=30
E 16 AT AR —m Tp=50
w ,/7/‘/ Latency Large T, i —a—_Tp=100000
Observed
155 16.35977 ms
)l% Best-Case Latency Predicted
9 5_ Observed 16.42342 ms
X 15.10088 ms
Predicted
145 T ’ - r T y
0 01 05 0.6 07 08 09 1
Up

Figure 26: Latency Observed for the Model Problem for Various T, Values

As described in Section 4.7, the no-background state is reached at different periodic utiliza-
tions for different periodic periods. For this model problem, the no-background state is
reached at a much smaller utilization for very small periods than for very large ones. The net
effect is that the above graph almost looks like an inverted version of Figure 8.

Table 3 shows the side-by-side comparisons of the heuristics calculated and the averages ob-
served through simulation in Figure 26.

Table 3: Comparison of Prediction Heuristics and Simulation Curves
Computed Heuristic Observed in Simulation
(in ms) (in ms)

H1: Best-Case Average Latency 15.13953 15.10088

H2: Worst-Case Average Latency 17.78947 17.78476

H4: Bound for Large T, 16.42342 16.35977

Because the model problem represents an extreme case where U, = 1 — S/ T (ie., the no-
background case), the heuristic H2 should offer an accurate prediction. The value computed
for H2 was compared to the average latency observed in many simulations of the model prob-

lem. These results are reported in Table 4. The prediction of 17.78947 ms was found to be
within 2 standard errors of the observed latency of 17.79473 ms.

CMU/SEI-2004-TR-017

53

Table 4: Predicted and Actual Average-Case Latency for Task M
Basic Statistics Value
Samples (n) 1035
Average Aperiodic Latency Observed 17.79473 ms
Standard Deviation (O) 0.12574 ms
Predicted Aperiodic Latency (E[W]) 17.78947 ms
Error 0.00526
Standard Error 0.00391
2 x Standard Errors 0.00782

54

CMU/SE}-2004-TR-017

6 Conclusions

This report documents the development and application of a theory for predicting the average
latency of aperiodic tasks that execute under the management of a sporadic server. The notion
of a sporadic server was invented many years ago, but this is the first time a detailed queue-
ing-theoretic analysis has been performed. Such analysis represents a step in the direction of
creating a comprehensive set of performance reasoning frameworks that includes using RMA
for a deterministic deadline analysis, queueing theory for average latency analysis, and a new
theory known as real-time queueing theory (RTQT) [Doytchinov 01] for probabilistic analy-
sis of deadline miss rates.

This report focused on task sets with the following characteristics:

e The assemblies are confined to a single processor.

e Each periodic event, whether clock or message based, is handled by one task (or a se-
quence of tasks). Each periodic task has an associated period and an execution time (or
sequence of execution times).

e All aperiodic events are funneled through a sporadic server.

e The sporadic server runs at the highest priority in the system and is characterized by an
execution budget and a replenishment period.

e The service time for each aperiodic event is constant and equal to the execution budget of
the sporadic server.

e The aperiodic arrivals arrive according to an exponential distribution with a specified
mean interarrival interval. We only consider a single stream of aperiodic events.

e Aperiodic events are allowed to use the CPU when either the sporadic server has suffi-

cient budget or the periodics are idle.

The analytical and empirical results described in this paper are applicable to a very large
spectrum of assemblies. In fact, the periodic assemblies can be arbitrarily complex.

6.1 Future Work

While we have gained many insights from examining a specific class of assemblies, our ob-
jectives are to solidify the theoretical foundations for what we have discussed in this paper
and to relax the assumptions, investigating a more general set of assemblies.

CMU/SEI-2004-TR-017 55

e We would like to gain a better understanding of the “middle period cases.” We under-
stand much about the cases where the period of the periodics is very small (relative to Sg)
and very large. However, we have only just begun to understand the midrange periods.

e We need to experiment with multi-periodic assemblies with a larger number of tasks. We
suspect that we can create situations in which the average latency of the aperiodics is
even better than the lower bound we observed in multi-periodic cases discussed in this
report.

e We have enumerated several places where our mathematical modeling needs to be im-
proved including accounting for length biasing, refining our blackout distributions, and
accounting for when many replenishments occur during a busy period.

e We intend to combine RTQT with the sporadic server for predicting the probability of
missing deadlines.

e Currently, arrivals and service time distributions are constrained to exponential and con-
stant distributions, respectively. Heavy traffic approximations might allow us to acquire
an analytic understanding while relaxing these restrictions. In any case, we will perform
empirical studies.

o Currently the sporadic server is confined to S = S,, S, is confined to being constant, and
the sporadic server must execute at the highest priority. We will investigate relaxing these
restrictions and whether, with a more general sporadic server capability, we may have
more control over the average latency of the aperiodics.

e So far, we have only investigated the uniprocessor case. In the future, we plan to investi-
gate the distributed problem.

e Earlier, we briefly investigated applying RTQT in a fixed-priority setting. We will con-
tinue that investigation. '

o We plan‘to implement an earliest deadline first (EDF) capability in our runtime infra-
structure—a natural setting for applying RTQT. ’

We plan to pursue the above areas with an eye towards their practical application.

56 CMU/SEI-2004-TR-017

Bibliography

URLs are valid as of the publication date of this document.

[Cinlar 97]

[Doytchinov 01]

[Gonzalez Harbour 91]

[Hissam 02]

[Hissam 04]

Cinlar, E. Introduction to Stochastic Processes. Englewood

'Cliffs, NJ: Prentice-Hall, Inc., 1997.

Doytchinov, B.; Lehoczky, J. P.; & Shreve S. “Real-Time
Queues in Heavy Traffic with Earliest-Deadline-First Queue
Discipline.” Annals of Applied Probability 11,2 (May 2001):
332-378.

Gonzalez Harbour, M. & Sha, L. An Application-Level Imple-
mentation of the Sporadic Server (CMU/SEI-91-TR-026,
ADA242129). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1991.
http://www.sei.cmu.edu/publications/documents/91.reports
/91.tr.026.html

Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Mo-
reno, G; Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; &
Wood, W. Predictable Assembly of Substation Automation Sys-
tems: An Experiment Report, Second Edition (CMU/SEI-2002-
TR-031, ADA418441). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.eduw/publications/documents/02.reports
/02tr031.html

Hissam, S. & Klein, M. A Model Problem for an Open Robotics
Controller (CMU/SEI-2004-TN-030). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports
/04tn030.html

CMU/SE!-2004-TR-017

57

[Klein 93]

[Kleinrock 75]

[R Development Core
Team 04]

[Ross 96]

[Shi 01]

[Sprunt 89]

[Wallnau 03]

Klein, M.; Ralya, T.; Pollak, B.; Obenza, R.; & Gonzalez Har-
bour, M. A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems. Bos-
ton, MA: Kluwer Academic Publishers, 1993.
http://www.sei.cmu.edu/publications/books
/other-books/rma.hndbk.html

Kleinrock, L. Queueing Systems Volume 1: Theory. New York,
NY: Wiley, 1975 (ISBN: 0-471491-10-1).

R Development Core Team. R: A Language and Environment
for Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing, 2004 (ISBN 3-900051-00-3).
http://www.R-project.org

Ross, Sheldon. Stochastic Processes Second Edition. New York,
NY: John Wiley & Sons, Inc., 1996 (ISBN: 0-47 1-12062-6).

Shi, W. Implementation and Performance of POSIX Sporadic
Server Scheduling in RTLinux (TR-010602). Tallahassee, FL:
Florida State University, 2001.

http://websrv.cs.fsu. edu/research/reports/'I‘R-010602 ps

Sprunt, B.; Sha, L.; & Lehoczky, J. Scheduling Sporadic and
Aperiodic Events in a Hard Real-Time System (CMU/SEI-89-
TR-11, ADA211344). Pittsburgh, PA: Software Engineering
Institute, Camegie Mellon University, 1989.
http://www.sei.cmu.edu/publications/documents/89.reports
/89.tr.011.html

Wallnau, K. Volume III: A Technology for Predictable Assembly
from Certifiable Components (CMU/SEI-2003-TR-009,
ADA413574). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003. http://www.sei.cmu.edu
/publications/documents/03.reports/03tr009.html

58

CMU/SEI-2004-TR-017

REPORT DOCUMENTATION PAGE o 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including supgestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) September 2004 ' Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Performance Property Theories for Predictable Assembly from Certifi- F19628-00-C-0003
able Components (PACC)

| 6. AUTHOR(S)

Scott Hissam, Mark Klein, John Lehoczky, Paulo Merson, Gabriel Moreno, Kurt Wallnau

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University ’ CMU/SEI-2004-TR-017
Pittsburgh, PA 15213 A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK - REPORT NUMBER
5 Eglin Street ESC-TR-2004-017
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 128 DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS 70

13. ABSTRACT (MAXIMUM 200 WORDS)
This report develops a queueing-theoretic solution to predict, for a real-time system, the average-case latency
of aperiodic tasks managed by a sporadic server. The report applies this theory to a model problem drawn in
the domain of industrial robot contro!. In this model problem, a controller with hard periodic deadlines is
“open” fo third-party plug-in extensions. The sporadic server is used to limit the invasiveness of aperiodic
tasks on the controller's hard deadlines. The theory developed in this report is used to predict the average-
case latency of a plug-in managed by a sporadic server.

14. SUBJECT TERMS 15. NUMBER OF PAGES
rate monotonic analysis, reasoning framework, real-time analysis, 70
predictable assembly, sporadic server, real-time queueing, latency

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATIONOF | 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT uL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (ﬁev.‘Z-B?) Prescribed by ANSI Std. Z39-18 288-102

